Self-adaptive differential evolution with multi-trajectory search for large-scale optimization
نویسندگان
چکیده
In this paper, Self-adaptive DE is enhanced by incorporating the JADE mutation strategy and hybridized with modified multi-trajectory search (MMTS) algorithm (SaDE-MMTS) to solve large scale continuous optimization problems. The JADE mutation strategy, the “DE/current-to-pbest” which is a variation of the classic “DE/current-to-best”, is used for generating mutant vectors. After the mutation phase, the binomial (uniform) crossover, the exponential crossover as well as no crossover option are used to generate each pair of target and trial vectors. By utilizing the self-adaptation in SaDE, both trial vector generation strategies and their associated control parameter values are gradually selfadapted by learning from their previous experiences in generating promising solutions. Consequently, suitable offspring generation strategy along with associated parameter settings will be determined adaptively to match different phases of the search process. MMTS is applied frequently to refine several diversely distributed solutions at different search stages satisfying both the global and the local search requirement. The initialization of step sizes is also defined by a self-adaption during every MMTS step. The success rates of both SaDE and the MMTS are determined and compared, consequently, future function evaluations for both search algorithms are assigned proportionally to their recent past performance. The proposed SaDE-MMTS is employed to solve the 19 numerical optimization problems in Special Issue of Soft Computing on Scalability of Evolutionary Algorithms for Large Scale Continuous Optimization Problems and competitive results are presented. Keyword: differential evolution, large scale continuous optimization, self-adaptation, strategy adaptation, parameter adaptation, multi-trajectory search, JADE mutation. S. Z. Zhao and P. N. Suganthan are with School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798 Singapore ([email protected], [email protected]) Swagatam Das is with Department of Electronics and Telecommunication, Jadavpur University, Kollkata, India. ([email protected])
منابع مشابه
Developing Self-adaptive Melody Search Algorithm for Optimal Operation of Multi-reservoir Systems
Operation of multi-reservoir systems is known as complicated and often large-scale optimization problems. The problems, because of broad search space, nonlinear relationships, correlation of several variables, as well as problem uncertainty, are difficult requiring powerful algorithms with specific capabilities to be solved. In the present study a Self-adaptive version of Melody Search algorith...
متن کاملSelf-adaptive Differential Evolution with Sqp Local Search
In this paper we present experimental results of self-adaptive differential evolution algorithm hybridized with a local search method. The results of the proposed hybrid algorithm are evaluated on a set of benchmark functions provided by the IEEE Congress on Evolutionary Computation (CEC 2008) special session on Large Scale Global Optimization. Performance comparison of our algorithm with other...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملSelf-adaptive differential evolution algorithm using population size reduction and three strategies
Many real-world optimization problems are large-scale in nature. In order to solve these problems, an optimization algorithm is required that is able to apply a global search regardless of the problems’ particularities. This paper proposes a self-adaptive differential evolution algorithm, called jDElscop, for solving large-scale optimization problems with continuous variables. The proposed algo...
متن کاملPareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm
Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 15 شماره
صفحات -
تاریخ انتشار 2011